From 070432d5055ade6bdfd6916a4fc63651ea5cef9d Mon Sep 17 00:00:00 2001 From: root Date: Thu, 19 Jun 2025 08:49:28 +0000 Subject: [PATCH] new test.py --- .gitignore | 2 ++ test.py | 76 +++++++++++++++++++++++++++++++++++++++++++++++++++--- 2 files changed, 75 insertions(+), 3 deletions(-) create mode 100644 .gitignore diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..ff7e2b7 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +mlruns/ + diff --git a/test.py b/test.py index 3230ca8..6408136 100644 --- a/test.py +++ b/test.py @@ -1,6 +1,76 @@ -import torch +# The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality +# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. +# Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009. -print(torch.__version__) +import os +import warnings +import sys -print("hello") +import pandas as pd +import numpy as np +from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score +from sklearn.model_selection import train_test_split +from sklearn.linear_model import ElasticNet + +import mlflow +import mlflow.sklearn + +import logging +logging.basicConfig(level=logging.WARN) +logger = logging.getLogger(__name__) + + +def eval_metrics(actual, pred): + rmse = np.sqrt(mean_squared_error(actual, pred)) + mae = mean_absolute_error(actual, pred) + r2 = r2_score(actual, pred) + return rmse, mae, r2 + + + +if __name__ == "__main__": + warnings.filterwarnings("ignore") + np.random.seed(40) + + # Read the wine-quality csv file from the URL + csv_url =\ + 'http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv' + try: + data = pd.read_csv(csv_url, sep=';') + except Exception as e: + logger.exception( + "Unable to download training & test CSV, check your internet connection. Error: %s", e) + + # Split the data into training and test sets. (0.75, 0.25) split. + train, test = train_test_split(data) + + # The predicted column is "quality" which is a scalar from [3, 9] + train_x = train.drop(["quality"], axis=1) + test_x = test.drop(["quality"], axis=1) + train_y = train[["quality"]] + test_y = test[["quality"]] + + alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5 + l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5 + + with mlflow.start_run(): + lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42) + lr.fit(train_x, train_y) + + predicted_qualities = lr.predict(test_x) + + (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities) + + print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio)) + print(" RMSE: %s" % rmse) + print(" MAE: %s" % mae) + print(" R2: %s" % r2) + + mlflow.log_param("alpha", alpha) + mlflow.log_param("l1_ratio", l1_ratio) + mlflow.log_metric("rmse", rmse) + mlflow.log_metric("r2", r2) + mlflow.log_metric("mae", mae) + + mlflow.sklearn.log_model(lr, "model")